Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Global climate goals require a transition to a deeply decarbonized energy system. Meeting the objectives of the Paris Agreement through countries' nationally determined contributions and long‐term strategies represents a complex problem with consequences across multiple systems shrouded by deep uncertainty. Robust, large‐ensemble methods and analyses mapping a wide range of possible future states of the world are needed to help policymakers design effective strategies to meet emissions reduction goals. This study contributes a scenario discovery analysis applied to a large ensemble of 5,760 model realizations generated using the Global Change Analysis Model. Eleven energy‐related uncertainties are systematically varied, representing national mitigation pledges, institutional factors, and techno‐economic parameters, among others. The resulting ensemble maps how uncertainties impact common energy system metrics used to characterize national and global pathways toward deep decarbonization. Results show globally consistent but regionally variable energy transitions as measured by multiple metrics, including electricity costs and stranded assets. Larger economies and developing regions experience more severe economic outcomes across a broad sampling of uncertainty. The scale of CO2removal globally determines how much the energy system can continue to emit, but the relative role of different CO2removal options in meeting decarbonization goals varies across regions. Previous studies characterizing uncertainty have typically focused on a few scenarios, and other large‐ensemble work has not (to our knowledge) combined this framework with national emissions pledges or institutional factors. Our results underscore the value of large‐ensemble scenario discovery for decision support as countries begin to design strategies to meet their goals.more » « less
-
Abstract Studies exploring long-term energy system transitions rely on resource cost-supply curves derived from estimates of renewable energy (RE) potentials to generate wind and solar power projections. However, estimates of RE potentials are characterized by large uncertainties stemming from methodological assumptions that vary across studies, including factors such as the suitability of land and the performance and configuration of technology. Based on a synthesis of modeling approaches and parameter values used in prior studies, we explore the implications of these uncertain assumptions for onshore wind and solar photovoltaic electricity generation projections globally using the Global Change Analysis Model. We show that variability in parametric assumptions related to land use (e.g. land suitability) are responsible for the most substantial uncertainty in both wind and solar generation projections. Additionally, assumptions about the average turbine installation density and turbine technology are responsible for substantial uncertainty in wind generation projections. Under scenarios that account for climate impacts on wind and solar energy, we find that these parametric uncertainties are far more significant than those emerging from differences in climate models and scenarios in a global assessment, but uncertainty surrounding climate impacts (across models and scenarios) have significant effects regionally, especially for wind. Our analysis suggests the need for studies focusing on long-term energy system transitions to account for this uncertainty.more » « less
-
null (Ed.)Abstract Integrated energy-water-land (EWL) planning promotes synergies and avoids conflicts in ways that sector-specific planning approaches cannot. Many important decisions that influence emerging EWL nexus issues are implemented at regional (e.g., large river basin, electricity grid) and sub-regional (e.g., small river basin, irrigation district) scales. However, actual implementation of integrated planning at these scales has been limited. Simply collecting and visualizing data and interconnections across multiple sectors and sub-regions in a single modeling platform is a unique endeavor in many regions. This study introduces and applies a novel approach to linking together multiple sub-regions in a single platform to characterize and visualize EWL resource use, EWL system linkages within and among sub-regions, and the EWL nexus implications of future policies and investments. This integrated planning methodology is applied in the water-stressed Colorado River Basin in Argentina, which is facing increasing demands for agricultural and fossil fuel commodities. Guided by stakeholders, this study seeks to inform basin planning activities by characterizing and visualizing (1) the basin’s current state of EWL resources, (2) the linkages between sectors within and among basin sub-regions, and (3) the EWL nexus implications of planned future agricultural development activities. Results show that water scarcity, driven in part by human demands that have historically reached 60% of total surface water supply, poses a substantial constraint to economic development in the basin. The Colorado basin has the potential to serve as a testbed for crafting novel and generalizable sub-regional EWL planning approaches capable of informing the EWL planning dialogue globally.more » « less
-
Abstract Climate change mitigation will require substantial investments in renewables. In addition, climate change will affect future renewable supply and hence, power sector investment requirements. We study the implications of climate impacts on renewables for power sector investments under deep decarbonization using a global integrated assessment model. We focus on Latin American and Caribbean, an under-studied region but of great interest due to its strong role in international climate mitigation and vulnerability to climate change. We find that accounting for climate impacts on renewables results in significant additional investments ($12–114 billion by 2100 across Latin American countries) for a region with weak financial infrastructure. We also demonstrate that accounting for climate impacts only on hydropower—a primary focus of previous studies—significantly underestimates cumulative investments, particularly in scenarios with high intermittent renewable deployment. Our study underscores the importance of comprehensive analyses of climate impacts on renewables for improved energy planning.more » « less
-
Abstract Despite broad consensus on the benefits of a nexus approach to multi-sector planning, actual implementation in government and other decision-making institutions is still rare. This study presents an approach to conducting integrated energy-water-land (EWL) planning, using Uruguay as an example. This stakeholder-driven study focuses on assessing the EWL nexus implications of actual planned policies aimed at strengthening three of Uruguay’s key exports (beef, soy, and rice), which account for more than 40% of total national export revenue. Five scenarios are analyzed in the study: a reference scenario, a climate impacts scenario, and three policy scenarios. The three policy scenarios include measures such as increasing the intensity of beef production while simultaneously decreasing emissions, increasing irrigated soybean production, and improving rice yields. This study supplements previous sector-specific planning efforts in Uruguay by conducting the first stakeholder-driven integrated multi-sector assessment of planned policies in Uruguay using a suite of integrated modeling tools. Key insights from the study are: as compared to a reference scenario, improving beef productivity could lead to cropland expansion (+30%) and significant indirect increases in water requirements (+20%); improving rice yields could lead to increases in total emissions (+3%), which may partially offset emissions reductions from other policies; expanding irrigated soy could have the least EWL impacts amongst the policies studied; and climate-driven changes could have significantly less impact on EWL systems as compared to human actions. The generalizable insights derived from this analysis are readily applicable to other countries facing similar multi-sector planning challenges. In particular, the study’s results reinforce the fact that policies often have multi-sector consequences, and thus policies can impact one another’s efficacy. Thus, policy design and implementation can benefit from coordination across sectors and decision-making institutions.more » « less
An official website of the United States government
